MA 125 CALCULUS I

Final Exam, April22, 2015

Name (Print last name first):

Show all your work, justify and simplify your answer! No partial credit will be given for the answer only!

PART I

You must simplify your answer when possible but you don't need to compute numbers: $e^{6} \sin(12/5) + 8$ is a fine answer.

All problems in Part I are 4 points each.

1. Use **the definition** of the derivative to show that the derivative of the function $y = f(x) = \frac{1}{x}$ is $f'(x) = -\frac{1}{x^2}$.

2. Find the derivative f'(x) if $f(x) = x^3 \sin(x)$.

3. Find the derivative f'(x) if $f(x) = \ln(x^4 + x^2)$.

4. Find the derivative f'(x) if $f(x) = \frac{x^2+1}{x^2-1}$.

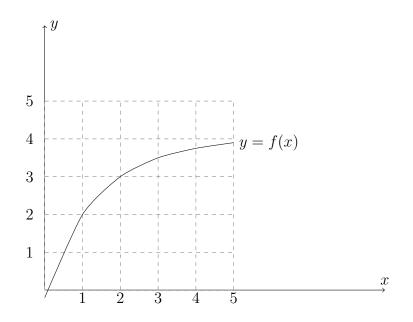
5. Find the anti-derivative $\int x^2(1+x) dx$.

6. Find the anti-derivative $\int x e^{x^2} dx$.

7. Find the anti-derivative $\int x^2 (x^3 + 5)^7 dx$.

8. Solve $\ln(2x+1) = 3$.

9. If
$$F(x) = \int_{2}^{x} \cos(t^2) dt$$
, find $F'(x)$.


10. If a rocket burns fuel at a rate of $3t^2 kg/s$, how much fuel is burned during the first 5 seconds?

11. Approximate $\int_{1}^{5} \frac{1}{x} dx$ using a Riemann sum with n = 4 terms and the midpoint rule. What does this number have to do with $\ln(5)$?

- 12. The velocity of a particle is given by $v(t) = t^3 + 1 (m/s)$.
 - (a) Find the acceleration a(1) of the particle,

(b) How far does the particle travel in the first 2 seconds?

13. Given the graph of the function f(x) below answer the following questions.

(a) Is f(x) one-to-one? Explain!!

- (b) Use the graph to approximate $f^{-1}(2)$.
- (c) Use the graph to approximate $(f^{-1})'(2)$.

PART II

1. 9 points. Find all local/absloute maxima/minima of the function $f(x) = (x+1)^5(1-x)^7$ on the real line $(-\infty, \infty)$.

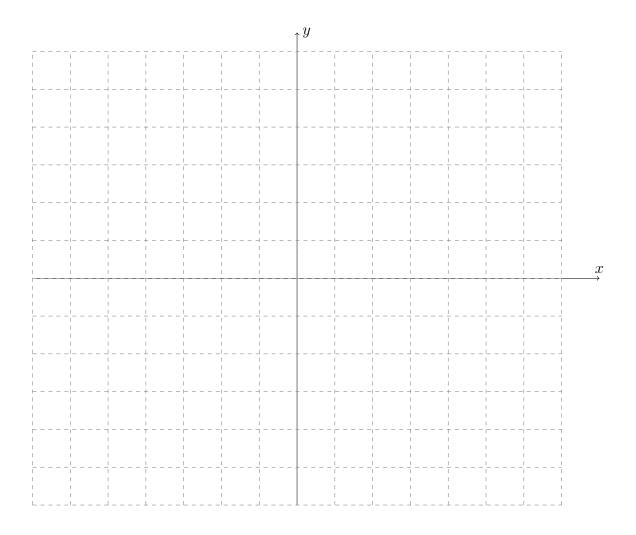
2. 9 points. Show that the equation

$$f(x) = x^3 - x + 1 = 0$$

has at least one solution.

Use Newton's method with $x_1 = -1.5$ to compute the next approximate solution x_2 .

3. 12 points. Graph the function $y = f(x) = \frac{x}{x^2 - 4}$. Find x and y-intercepts, horizontal and vertical asymptotes, all critical numbers, intervals of in-/de-creasing, local/absolute max/min


Draw your graph on the next page. Find:

(a) x and y intercepts,

(b) vertical and horizontal asymptotes,

(c) critical numbers,

(d) intervals where f(x) is in/de-creasing, and local max/min.

4. 9 points. Find the average value of the function $y = f(x) = x \sin(x^2)$ on the interval $[0, \sqrt{\pi}]$.

5. 9 points. A farmer wants to fence a piece of land along the side of a river. If the bank of the river is straight and he has 100 *m* of fence available, find the dimensions of a rectangular plot of maximal area. [Note that no fence is needed along the river.]

Scratch paper