EGR 265, TEST III

EGR 265, Math Tools for Engineering Problem Solving April 8, 2015, 50 minutes

Name:

Problem 1	
Problem 2	
Problem 3	
Problem 4	
Problem 5	
Problem 6	
Problem 7	
Problem 8 [*]	
Total	

Problem 1 (7+7 points)

(a) Find the gradient of the function $f(x, y) = 3xy^2 + x^3$.

(b) Find the directional derivative of f(x, y) at the point (1, 1) in the direction of the vector $\mathbf{v} = -3\mathbf{i} + 4\mathbf{j}$.

Problem 2 (10+4+4 points)

(a) For the function $g(x, y) = e^{x+2y}$ find the rate of steepest ascent at the origin (0, 0).

(b) Find a unit vector in the direction of steepest *ascent* for g(x, y) at the origin.

(c) Find a unit vector in the direction of steepest descent for g(x, y) at the origin.

Problem 3 (12+6 points)

(a) Find an equation for the tangent plane to the level survace $xy^2z^3 = 1$ at the point (1, 1, 1).

(b) Also, find parametric equations for the normal line of $xy^2z^3 = 1$ at (1, 1, 1).

Problem 4 (12 points)

Evaluate $\int_C (y-1) ds$, where C is the quarter circle or radius 1, centered at the origin, starting at (1,0) and ending at (0,1)

Problem 5 (14 points)

Find the work done by the force field

$$F(x,y) = y\,\mathbf{i} - x\,\mathbf{j}$$

along the curve parameterized by $x = t^2$, $y = t^3$, $0 \le t \le 1$.

Problem 6 (5+5 points)

Determine for each of the following force fields if it is conservative.

(a)
$$F(x,y) = (3x^2 - y)\mathbf{i} + (x + 4y)\mathbf{j}$$

(b)
$$F(x,y) = (3x^2 + y))\mathbf{i} + (x - 4y)\mathbf{j}$$

Problem 7 (14 points)

For the conservative force field F(x, y) from Problem 6 find a potential function $\phi(x, y)$ and calculate the work done by the force field along the curve parameterized by x = t, $y = t \sin t$, $0 \le t \le \pi/2$. Problem 8^* (6 points bonus)

The height of a mountain is described by the function $z = xy - 2x^2 - y^2 + 2y$. Find the x and y coordinates of the top of the mountain.