MA 227, CALCULUS III

Spring, 2013

Name (Print last name first):	
Student Signature:	

TEST 3

10 questions, 10 points each. SHOW ALL YOUR WORK!

Question 1

Find $\int \int_D x \, dx dy$, where D is bounded by $y = x^4$ and $y = x^2$.

Find the volume under the surface z = x and above the triangle in the xy plane with vertices (0,0), (3,0), (1,1).

Sketch the region of integration and change the order of integration:

$$\int_0^1 \int_0^{y^2} f(x, y) dx dy.$$

$\underline{\text{Question } 4}$

Use polar coordinates to find the volume under the plane z=x-y+2 and above the half-disk $x^2+y^2\leq 1,\ y\leq 0$ in xy plane.

Find the mass of the lamina that occupies the region:

$$D = \{(x,y)|\ x^2 + y^2 \le 4,\ x \ge 0\}$$

and has the density function given by $\rho(x,y) = x^2 + y^2$.

$\underline{\text{Question } 6}$

Evaluate the iterated integral $\int_0^1 dx \int_{x^2}^x dy \int_0^y dz$.

$\underline{\text{Question } 7}$

Express the integral $\int \int \int_E f(x,y,z) dV$ as an iterated integral, where E is the solid above the region $D = \{(x,y) : x^3 \leq y \leq x^2\}$ in xy plane and below the plane z = 2x + y.

$\underline{\text{Question } 8}$

Find $\int \int_D (x+2y) \, dx dy$, where D is bounded by $x-y=0, \, x-y=4, \, x+2y=1, \, x+2y=4$. Use change of variables $u=x-y, \, v=x+2y$.

$\underline{\text{Question 9}}$

For the integral $\int \int_D f(x,y) dxdy$ consider the change of variables $u=xy^2, v=\frac{x}{y}$. Find inverse change of variables x=x(u,v), y=y(u,v) and calculate corresponding Jacobian. You DO NOT need to substitute it into integral.

(a) Change $(R, \theta, \varphi) = (2, 2\pi/3, \pi/6)$ from spherical to rectangular coordinates.

(b) Change $(-\sqrt{3}, 1, 2\sqrt{3})$ from rectangular to spherical coordinates.