MA 227, CALCULUS III

Spring, 2013

 Name (Print last name first):

 Student Signature:

10 questions, 10 points each. SHOW ALL YOUR WORK! CIRCLE YOUR ANSWER!

<u>Question 1</u>

Find the gradient of the function $f(x, y) = xe^{-x^2y}$ at the point (1, 0).

<u>Question 2</u>

Find the directional derivative of the function $f(x, y, z) = x^2 z + y z^2$ in the direction of the vector $\vec{v} = \vec{i} + \vec{j} + 2\vec{k}$ at the point (1, 2, -1).

<u>Question 3</u>

Find local maximum, minimum and saddle points (if any) of the function

$$f(x,y) = x^2 - 2xy + 2y^2 + y + 2.$$

$\underline{\text{Question } 4}$

Let $z = x^2y - \frac{x}{y}$. Find equation of the tangent plane at point (-1, 1).

<u>Question 5</u>

Find linear approximation for the function

$$f(x,y) = x^3 - xy^2 + yx^2$$

near point (1, 2).

<u>Question 6</u>

Let $f(x,y) = xy - \frac{y}{x^2}$ and x = s - t, $y = s - t^2$. Find partial derivatives $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$.

 $\underline{\text{Question } 7}$

Let $f(x,y) = x\cos(y) - x^3y$. Find all second partial derivatives: f''_{xx} , f''_{xy} , f''_{yy} .

<u>Question 8</u>

Find equation of the tangent plane to the surface $x^2 + y^3 - z^4 = 4$ at the point (-2, 1, 1).

<u>Question 9</u>

Find the maximum rate of change of $f(x,y) = xy^{1/3} - \frac{y}{x}$ at the point (-1,1). In which direction does it occur?

<u>Question 10</u>

Find the absolute maximum and absolute minimum of the function $f(x, y) = -x^2 - y^2 + 4y + 1$ on the region $-1 \le x \le 0$, $0 \le y \le 1$. Be sure to provide coordinates of the points and the values of absolute maximum and minimum.