Calculus II, Exam III, Spring 2012

Name:_____

Student signature:

Show all your work and give reasons for your answers. Good luck! Part I

Each problem in part I is worth 7 points; You **must** justify your answers!! Evaluate the following integrals

(1) Find the area bounded by the graphs of the functions $y = \cos(x) + 5$ and y = x between $x = \pi/2$ and $x = \pi$.

(2) Set up an integral for the solid of revolution obtained by rotating the area described in problem 1 around the x-axis.

(3) **Set up** an integral for the solid of revolution obtained by rotating the area described in problem 1 around the **y**-axis.

(4) Determine if the improper integral $\int_{1}^{\infty} \frac{1}{x^2} dx$ is convergent or divergent. If it is convergent, evaluate the integral. (5) Find the arc length of the curve $\vec{r}(t) = <\sin(t), \cos(t) >$ for $\pi/2 \le t \le \pi$.

(6) Set up an integral for the arc length of the graph of the function $y = f(x) = (x^2 + 1)^3$ for $0 \le x \le 1$.

(7) Find the work done in moving a mass of 7 kg a distance of 2m horizontally and 3m vertically upward.

Part II

Each problem in part II is worth 13 points. Justify all your work for full credit!!

In the next two problems **set up** integrals for the volume of the solid obtained by rotating the area bounded by $y = f(x) = x^3 + x + 3$, $y = g(x) = \sin(x)$, x = 0 and $x = \pi/2$ about the indicated axis.

1. Rotate about the line x = -2.

2. Rotate the above region about the line y = -2.

3. Find the volume of the solid whose cross sections perpendicular to the x-axis are round disks with their diameter stretching from the graph of y = f(x) = 2x - 3 to the graph of $y = g(x) = x^2 + 2x$ for $0 \le x \le 1$.

4. Find the work done in pumping all the water out of a half full conical tank (with vertex up) of height h = 8 m, radius r = 6 m (i.e., the water in the tank is up to level 4 m from the bottom). Use $g \approx 10 m/sec^2$ and density of water $\rho = 1,000 kg/m^3$.