Calculus II, Exam III, Spring 2011

Student signature:		
 management for your engagement	Cood hadd	

Name:____

Show all your work and give reasons for your answers. Good luck! Part $\, {\rm I} \,$

Each problem in part I is worth 6 points; Show your work!!

Evaluate the following integrals

(1) Find the area bounded by the graphs of the functions $y = x^3 + 5$ and $y = \sin(x)$ between x = 0 and $x = \pi/2$.

(2) **Set up** an integral for the solid of revolution obtained by rotating the area described in problem 1 around the **x**-axis.

(3) **Set up** an integral for the solid of revolution obtained by rotating the area described in problem 1 around the **y**-axis.

(4) Determine if the improper integral $\int_1^\infty \frac{1}{x^3} dx$ is convergent or divergent. If it is convergent, evaluate the integral.

(5) Find the arc length of the curve $\vec{r}(t) = \cos(t)$, $\sin(t) > \text{for } 0 \le t \le \pi/2$.

(6) **Set up** an integral for the arc length of the graph of the function $y = f(x) = \sin(x)$ for $0 \le x \le \pi$.

(7) Find the work done in stretching a spring 1 m from its rest position if it takes a force of 500 N to stretch it 2m from its rest position.

(8) Find the work done in moving a mass of 5 kg a distance of 1m horizontally and 1 m vertically upward.

Part II

Each problem in part II is worth 13 points.

Justify all your work for full credit!!

In the next two problems **set up** integrals for the volume of the solid obtained by rotating the area bounded by $y = f(x) = x^2 + 2$, $y = g(x) = \sin(x)$, x = 0 and $x = \pi/2$ about the indicated axis.

1. Rotate about the line x = -3.

2. Rotate about the line y = -3.

3. Find the volume of the solid whose cross sections perpendicular to the x-axis are round disks with their diameter stretching from the graph of $y = f(x) = \sqrt{x}$ to the graph of $y = g(x) = x^2$ for $0 \le x \le 1$.

4. Find the work done in pumping all the water out of a half full conical tank (with vertex down) of height $h=5\,m$, radius $r=4\,m$ (i.e., the water in the tank is up to level $2\,m$ from the bottom). Use $g\approx 10\,m/sec^2$ and density of water $\rho=1,000\,kg/m^3$.