Calculus II, Exam I, Spring 2011

Name:

Student signature:

Show all your work and give reasons for your answers. Good luck!

Part I

Each problem in part I is worth 5 points; Show your work!!

(1) Find the angle between the vectors $\vec{a}=<0,1,2>$ and $\vec{b}=<-1,2,-3>$. (You may express your answer in terms of arccos.)

(2) Find the equation of the plane perpendicular to the line x = 2 + t, y = 1 - 2t and z - 1 - 3t which passes through the point (-1, -1, -3).

(3) Find the area of the parallelogram spanned by the vectors < 1, 0, 1 > and < -1, 2, 1 >.

(4) If $\vec{a}=<-2,-1,3>$ and $\vec{b}=<2,1,3>$ find the component $\mathrm{com}_{\vec{b}}(\vec{a}).$

(5) if $\vec{u} = \langle 1, 0, 1 \rangle$ and $\vec{v} = \langle 2, 5, -2 \rangle$ is \vec{u} perpendicular to \vec{v} ? (You **must** justify your answer.)

(6) If $\vec{r}(t) = \langle \sin(t), t^3, e^t \rangle$, find $\lim_{t \to \pi} \vec{r}(t)$.

(7) If $\vec{r}(t) = \langle e^t, t \cos(t), t^2 \rangle$ find the derivative $\vec{r}(t)'$.

(8) If $\vec{r}(t) = \langle e^t, t \cos(t), t^2 \rangle$, find the unit tangent vector T(t).

(9) Find the distance between the panes 2x + y - z = 3 and 4x + 2y - 2z = 10.

(10) Are the lines $\frac{x-1}{1} = \frac{y+2}{5} = \frac{z-2}{-2}$ and $\frac{x+4}{2} = \frac{y-7}{10} = \frac{z+11}{-4}$ parallel? (You **must** justify your answer.)

(11) Are the vectors <1,0,2>,<2,3,1> and <1,3,-1> coplanar (You must justify your answer!)

Part II

(1) (a) [5 points] Find the area of the triangle with vertices P = (1,2,1), Q = (2,2,3) and R = (3,1,1).

(b) [5 points] Determine if the vectors < 1, 0, 1 >, < 2, -1, 1 > and < -1, 2, 1 > are coplaner. (You must justify your answer.)

(2) [15 points] Given the lines:

$$\ell_1 = \begin{cases} x = -1 + 2t \\ y = 1 + t \\ z = 4 - t \end{cases} \quad \text{and} \quad \ell_2 = \begin{cases} x = -1 + t \\ y = 2 + 3t \\ z = -1 - 2t \end{cases}$$

determine if they are skew or not. If they are skew, find their distance. If not, find the point of intersection.

(3) [10 points] Find the line of intersection of the planes x - 2y + 3z = 1 and 2x + y - z = 4.

- (4) Let $\vec{r}(t) = \langle t \sin(t), (t^2 + 1)^5, \ln(t) \rangle$ be the position of a fly at time t, find
 - (a) [5 points] The velocity vector $\vec{v}(t)$ at time $t = \pi$.

(b) [5 points] The speed at time $t = \pi$.

(c) [5 points] The unit tangent vector $\vec{T}(t)$ at time $t = \pi$.

(5) [Bonus: 5 points] Assume that $|\vec{r}(t)| = c$ is constant show that $\vec{r}(t)$ is perpendicular to $\vec{r}(t)'$. (Hint use the fact that $\vec{r}(t) \cdot \vec{r}(t) = c^2$ is constant and, hence $0 = \frac{d}{dt} [\vec{r}(t) \cdot \vec{r}(t)]$.) Do you see a geometric interpretation of this fact?