MA 227, CALCULUS III

Spring, 2009

Name (Print last name first):	
Student Signature:	

TEST 3

10 questions, 10 points each. SHOW ALL YOUR WORK!

Question 1

Find $\int \int_D x \, dx \, dy$, where D is bounded by $y = 2x^2$ and y = 4x.

$\underline{\text{Question 2}}$

Find the volume under the surface z = xy and above the triangle in the xy plane with vertices $(0,0),\,(1,0),\,(1,1)$.

Sketch the region of integration and change the order of integration:

$$\int_0^1 \int_{x^2}^1 f(x, y) dy dx.$$

Use polar coordinates to find the volume under the plane z=x+2y+4 and above the half-disk $x^2+y^2\leq 4,\ y\geq 0$ in xy plane.

Find the mass of the lamina that occupies the region:

$$D = \{(x,y)|\ x^2 + y^2 \le 1,\ x \ge 0\}$$

and has the density function given by $\rho(x,y)=x.$

Evaluate the iterated integral $\int_0^1 dy \int_0^{y^2} dx \int_0^y dz$.

Question 7

Express the integral $\int \int \int_E f(x,y,z) dV$ as an iterated integral, where E is the solid above the region $D = \{(x,y) : y^2 \le x \le 1\}$ in xy plane and below the plane z = 1.

Using cylindrical coordinates evaluate $\int \int \int_E (x^2 + y^2) dV$, where E is the region that lies inside the cylinder $x^2 + y^2 = 1$ and between planes z = 0 and z = 3.

a) Change $(-1,\sqrt{3},0)$ from rectangular to spherical coordinates.

b) Using spherical coordinates evaluate $\int \int \int_E z \, dV$, where E is the ball $x^2+y^2+z^2 \le 1$.

Using triple integral in spherical coordinates find the volume of the solid bounded by the surfaces $x^2+y^2+z^2=1$, $x^2+y^2+z^2=4$ in the upper half-space $z\geq 0$.