MA 227, CALCULUS III

Spring, 2010

10 questions, 10 points each. SHOW ALL YOUR WORK! CIRCLE YOUR ANSWER!

<u>Question 1</u>

Find the gradient of the function $f(x, y) = xe^{xy}$ at the point (2, 0).

<u>Question 2</u>

Find the directional derivative of the function f(x, y, z) = xz - xy in the direction of the vector $\vec{v} = \vec{i} - 2\vec{j} + 2\vec{k}$ at the point (1, 2, 0).

$\underline{\text{Question } 3}$

Find local maximum, minimum and saddle points (if any) of the function

$$f(x,y) = 2x^{2} + 4xy - y^{2} + 6x - 5.$$

$\underline{\text{Question } 4}$

Let $z = x^3y^2 - \frac{x}{y}$. Find equation of the tangent plane at point (2, 1).

<u>Question 5</u>

Find linear approximation for the function

$$f(x,y) = 2x^2 + y + yx$$

near point (1, -2).

<u>Question 6</u>

Let $f(x,y) = xy - x^2y$ and x = s - t, $y = s^2t$. Find partial derivatives $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$.

<u>Question 7</u>

Let $f(x,y) = x^2y - xy^2$ and $x = t^2$, y = 3t. Find derivative $\frac{df}{dt}$.

<u>Question 8</u>

Find equation of the tangent plane to the surface $x^2 + 2y^2 - 3z^2 = 3$ at the point (2, -1, 1).

 $\underline{\text{Question }9}$

Find the maximum rate of change of $f(x,y) = x^2y + 2\sqrt{y}$ at the point (2,1). In which direction does it occur?

<u>Question 10</u>

Find the absolute maximum and absolute minimum of the function $f(x, y) = 2x^2 + 3y^2 - 4x - 5$ on the region $0 \le x \le 2$, $-1 \le y \le 1$. Be sure to provide coordinates of the points and the values of absolute maximum and minimum.