EGR 265, TEST I

EGR 265, Math Tools for Engineering Problem Solving February 2, 2009, 50 minutes

Name (Print last name first):

Student ID Number:

TEST I

Problem 1

Determine the order of the following ODEs. Also, state if they are linear or non-linear. (4P+4P+4P+4P)

(a) $y' + \cos x = y$

(b)
$$y' + \cos y = x$$

(c)
$$\frac{y'' - \sin x}{y} = \cos x$$

(d)
$$y''' = xyy' + x^2$$

Problem 2

Which of the following functions are solutions of $2x^2y'' - xy' + y = 0$? Justify your answers! (4P+4P+4P)

(a) y = x

(b) $y = x^2$

(c) $y = \sqrt{x}$

$\underline{\text{Problem } 3}$

Below the direction field for y' = y - 1 is given.

Direction Field for y' = y - 1

1	1	1	1	1	1111	1	11111	1	f	1	1	1	1	1	1	1	1111	1
1	1	1	1	1	1	1	1	1	44	1	1	1	1	1	1	1	1	1
í	1	1	1	1	1	1	1	1	ł	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	4	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
/	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1
-	-	-	-	-	-	-	-	1	+	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-
~	~	~	~	~	~	~	~		+	~	~	~	~	~	~	~	~	-
4	4	34	-	-	1	-	-	*	+		-	-	1	-		-	1	- 24
+	-14				-2	*	*	•	1	1	1	1	2	*		1	4	1
+ / /	-4					1 1		* .	1	1	11	1	2 1	* *	× × ×	* *	4	1 1
1 1 1 1	4		1	1	1	* * * *	*	* • • •	* * * *	* * *			2 - 2		* * *	1	1	١
1	4 1 1 1		111	1 1 1	1 1	* * * * *		* * * *	2	* * * *			2	٦	X	1	1	1
1	***		111	1 1 1	1 1	* * * * * *		* * * * * *	2	* * * * * *			A	1		1 1 1	111	1
+	**			1	****	* ` ` ` ` ` `	* * * * * * *	* * * * * * * *	2	* * * * * * *			A	1	X	1	111	1
+	**		~~~~	****	****	* * * * * * * * *		* * * * * * * * *	2	* * * * * * * *			N	1	X	N N N N	1111	1 1 1
+	**		~~~~	****	****	* * * * * * * * *		++	2	* * * * * * * * *			2	1	X	N N N N	~ ~ ~ ~ ~	1 1 1

- (a) Sketch the solution y(x) of y' = y 1 with initial value y(1) = -1. (6P)
- (b) From your sketch determine $\lim_{x\to\infty}y(x)$ and $\lim_{x\to-\infty}y(x).$ (4P)

 $\underline{\text{Problem 4}}$

Solve the IVP (14P)

$$e^{-x}y' = y^2, \quad y(0) = -\frac{1}{2}$$

 $\underline{\text{Problem 5}}$

Solve the IVP (14P)

$$\frac{y'+y}{x} = 1, \quad y(0) = 1$$

 $\underline{\text{Problem } 6}$

Solve the IVP (14P)

$$y' = xy\sqrt{x^2 + 1}, \quad y(0) = 1$$

Problem 7

The mass of a radioactive material is given by m(t), where the time t is measured in years and the mass in grams. An initial mass of m(0) = 10 grams decays at a constant rate k = m'(t)/m(t). After one year 8 grams of the material are left.

- (a) Find the decay rate k by solving the differential equation for m(t). (10P)
- (b) Find an expression for the time t_h at which only 5 grams of the material are left (t_h is the so-called *half-life* of the material). (4P)

Note: Your answers will contain natural logarithms which do not need to be evaluated.

(a)