CALCULUS II; SPRING 2005

Name:_____

Student Number:

You must show your work and give reasons for your answers! Good luck.

Evaluate the following integrals:

1. $\int \frac{x^5 + 3x^2 - 4}{x^2} dx$

2. $\int_0^{\pi} x^3 \sin(3x^4 + 7) dx$

3. $\int x^2 \ln(x) dx$

4. $\int e^x \sin(x) dx$

5. Set up a Riemann sum to approximate the integral

$$\int_0^3 x \cos(x) \, dx$$

using 4 terms. You do NOT need to compute the sum of the terms.

6. How many terms are required to approximate the integral $\int_1^3 \sin(x) dx$ using Simpson's rule with an error less than 10^{-7} ?

7. $\int \frac{\cos(\theta)}{\sin^2(\theta) + \sin(\theta) - 2} d\theta$

8. $\int \sin^4(\theta) \, d\theta$

9. $\int \frac{x}{\sqrt{a^2 - x^2}} dx$

CALCULUS II; SPRING 2005

Name:

Student Number:

You must show your work and give reasons for your answers! Good luck.

Evaluate the following integrals:

1. $\int \sqrt{x}(x^2 - x^5) \, dx$

2. $\int_1^2 x^5 \ln(2x^6 + 9) dx$

3. $\int x^2 \sin(x) dx$

4. $\int \arctan(x) dx$

5. Set up a Riemann sum to approximate the integral

$$\int_{1}^{2} x \ln(x) \, dx$$

using 5 terms. You do NOT need to compute the sum of the terms.

6. How many terms are required to approximate the integral $\int_2^3 \ln(x) dx$ using Simpson's rule with an error less than 10^{-7} ?

7.
$$\int \frac{e^t}{e^{2t} - e^t - 6} dt$$

8. $\int \sin^4(\theta) \, d\theta$

9. $\int \frac{1}{4+x^2} dx$