Name:	

Student Number:

Show all your work and give reasons for your answers. Good luck!

(1) Evaluate the following integrals: (a) $\int x(x^2 - 5)^4 dx$

(a)
$$\int x(x^2-5)^4 dx$$

(b)
$$\int \tan^5(x) \sec^2(x) dx$$

(c)
$$\int x^2 \sin(x) dx$$

(d)
$$\int \frac{1}{x^2 - 1} \, dx$$

(2) Use the midpoint rule and a partition using 4 intervals (n=4) to approximate the value of the definite integral $\int_0^1 e^{-x^2} dx$. Estimate the error. You do not need to multiply and add all the numbers; just write them down!

(3) Find the area between the graphs of the functions $y = x^2 - 2$ and y = x.

(4) **Set up (but do not evaluate)** an integral for the volume of revolution obtained by rotating the area bounded by the graph of $y = \sin(x)$, the line y = 2 between x = 0 and x = 10 about the line y = -5.

(5) Find the radius and interval of convergence of the series $\sum_{n=0}^{\infty} (-1)^n \frac{(x-5)^n}{n^2}$

(6) Find the MacLaurin series for the function $f(x) = e^{-x^2}$ and use this series to give the exact answer to $\int_0^1 e^{-x^2} dx$. What is the error if you only add the first 4 terms of this series? (Compare this to the error in Problem 2; which method is better?)

(7) Find an equation for the line of intersection of the planes 3x - y + z = 1 and x - 2y + z = 2.

(8) Find the equation of the plane through the point (-1,1,2) and perpendicular to the line

$$\begin{cases} x = 1 + t \\ y = 2 - t \\ z = 1 - 2t \end{cases}$$

(9) Draw the graph of the function $z = f(x, y) = 1 - \frac{1}{2}x - \frac{1}{3}y$.

(10) Find the distance from the point (3, -1, 4) to the plane 2x - y + z = 2 using vectors.