MA 227, CALCULUS III Fall, 2011

Name (Print last name first):	
Student Signature:	
	TEST 3
10 questions, 10 points each.	. SHOW ALL YOUR WORK!
Question 1	

Find $\iint_D x \, dx dy$, where D is bounded by $y = x^3$ and $y = x^2$.

$\underline{\text{Question 2}}$

Find the volume under the surface z=y and above the triangle in the xy plane with vertices $(0,0),\,(2,0),\,(1,1).$

Sketch the region of integration and change the order of integration:

$$\int_0^1 \int_0^{x^4} f(x, y) dy dx.$$

Use polar coordinates to find the volume under the plane z=2x-y+6 and above the half-disk $x^2+y^2\leq 4,\ y\geq 0$ in xy plane.

Find the mass of the lamina that occupies the region:

$$D = \{(x,y)|\ x^2 + y^2 \le 1,\ x \le 0\}$$

and has the density function given by $\rho(x,y) = x^2 + y^2$.

$\underline{\text{Question } 6}$

Evaluate the iterated integral $\int_0^1 dx \int_0^x dy \int_0^{xy} dz$.

$\underline{\text{Question } 7}$

Express the integral $\int \int \int_E f(x,y,z) dV$ as an iterated integral, where E is the solid above the region $D = \{(x,y) : y^2 \le x \le y\}$ in xy plane and below the plane z = x + y.

$\underline{\text{Question } 8}$

Find $\int \int_D (x-2y) \, dx dy$, where D is bounded by $x+y=0, \, x+y=4, \, x-2y=1, \, x-2y=2$. Use change of variables $u=x+y, \, v=x-2y$.

$\underline{\text{Question 9}}$

For the integral $\int \int_D f(x,y) dxdy$ consider the change of variables $u=x^2y$, $v=\frac{x^2}{y}$. Find inverse change of variables x=x(u,v), y=y(u,v) and calculate corresponding Jacobian. You DO NOT need to substitute it into integral.

(a) Change (2, $\pi/4$, $\pi/3$) from spherical to rectangular coordinates.

(b) Change $(1, -\sqrt{3}, 0)$ from rectangular to spherical coordinates.