MA 125 6C, CALCULUS I September 25, 2017

September 29, 2017												
Name (Print last name first):												
TEST I												
Show all your work! No partial credit will be given for the answer only!												
PART I												
Part I consists of questions. Clearly write your answer in the space provided after each question. Show all of your your work! All problems in Part I are 7 points each												
Question 1												
Use the definition of the derivative to show that the derivative of $y = f(x) = \frac{1}{x}$ is $f'(x) = \frac{-1}{x^2}$.												
Question 2												
Find the derivative of $f(x) = x^2(x^2 + \sqrt[3]{x})$												
Answer:												

Question 3

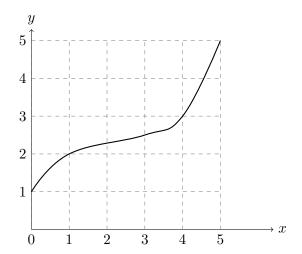
Find the derivative of $y = f(x) = x \cos(x)$.

Answer:

Question 4

Find the derivative of $y = f(x) = \frac{x}{x^2 + 1}$.

Answer:


Question 5

Find the equation of the tangent line to the graph of $y = f(x) = 3x^2 + x$ at the point x = 1.

Answer:

Question 6

Using the graph of the function y = f(x) below estimate: f(2) and the derivative f'(2).

A											
Answer:											

Question 7

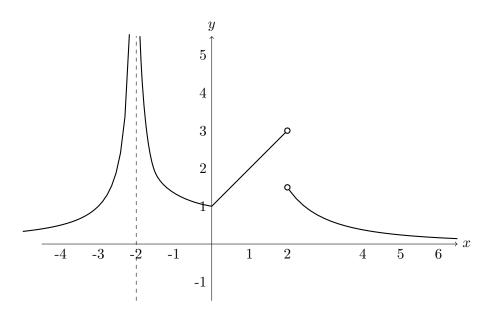
If $Q(x) = x^3 - 25x + 100$ is the cost per item of producing x-items. Is the cost per item increasing or decreasing when you produce 15 items?

Question 8

Show that the equation $f(x) = 2x^3 + 3x + 6 = 0$ has at least one solution; find an interval of length $\frac{1}{2}$ which must contain a solution.

PART II

Part II consists of 4 problems. You must show correct reasons to get full credit. Displaying only the final answer (even if correct) without the relevant steps will not get full credit.


Problem 1 (12 points)

Suppose that $S(t) = t^3 - 12t$ m. is the position of a particle at time t (in seconds) on a line.

- (a) Is the position increasing or decreasing at time t = 1?
- (b) What is the displacement from t = 0 to t = 3.
- (c) What is the total distance travelled between t = 0 and t = 3.

Problem 2 (10 points)

Given the graph of the function y = f(x) below find:

1.
$$\lim_{x \to -2^-} f(x) =$$

2.
$$\lim_{x \to -2^+} f(x) =$$

$$3. \lim_{x \to -2} f(x) =$$

4.
$$\lim_{x \to 2^{-}} f(x) =$$

5.
$$\lim_{x \to 2^+} f(x) =$$

$$6. \lim_{x \to 2} f(x) =$$

$$7. \lim_{x \to \infty} f(x) =$$

$$8. \lim_{x \to -\infty} f(x) =$$

- 9. State all intervals on which f(x) is continuous.
- 10. State all intervals where f(x) is differentiable.

Problem 3 (12 points)

Evaluate the following limits: a)
$$\lim_{x\to\infty} \sqrt{x^2+1} + \sqrt{x^2+2}$$

b)
$$\lim_{x \to \infty} \sqrt{x^2 + 1} - \sqrt{x^2 + 2}$$

c)
$$\lim_{x \to \infty} x \sin(x)$$

Problem 4 (10 points)

Define a function

$$f(x) = \begin{cases} \frac{x^2 + x - 2}{x - 1}, & x \neq 1, \\ k, & x = 1, \end{cases}$$

- a) (8 points) Find the value of k so that f(x) is a continuous function for all real numbers x.
- **b)** (2 points) For the value of k you found, is f(x) differentiable at x = 1? Briefly explain.