MA 125 VT, Honors CALCULUS I

Test 4, November 18, 2015

Name (Print last name first):

Show all your work and justify your answer!

No partial credit will be given for the answer only!

PART I

You must simplify your answer when possible. All problems in Part I are 8 points each.

1. If $f(x) = \ln(\sec(x))$, find the derivative f'(x).

2. Find the anti-derivative F(x) of the function $f(x) = \tan(x)$.

3. Find the derivative of $f(x) = e^{\sin(x)}$.

4. Evaluate
$$\int \frac{x^3 + 1}{x^4 + 4x} dx$$

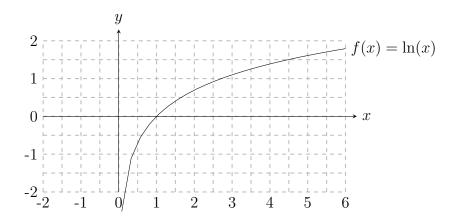
5. Solve $e^{3x+2} = 9$.

6. Solve $\ln(2x+1) = -2$.

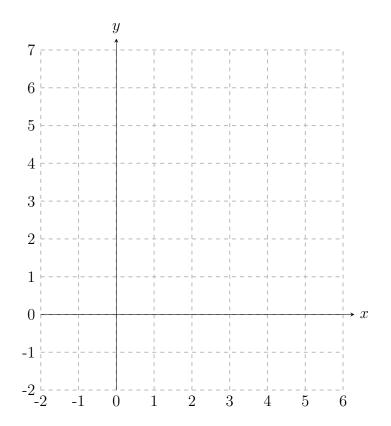
7. Use Newton's method to approximate the value of $\sqrt{101}$. Start with $x_1 = 10$ and only compute the second approximate value x_2 .

8. Given $f(x) = x^5 + 2x + 1$ show first that f(x) is one-to-one and next compute the derivative $(f^{-1})'(1)$

PART II


1. **[8 points]** Comment on the following solution. Explain each of the steps and comment if they are correct.

$$\int_{-1}^{1} \frac{1}{x} \, dx = \ln |x| \, |_{-1}^{1} = \ln(1) - \ln(1) = 0.$$


- 2. [12 points] Given the graph of $y = \ln(x)$ below read off:
 - (1) the value $y = \ln(1.5)$
 - (2) the value of $x = e^{1.5}$

(3) Estimate the derivative of e^x at x = 1.5 (Hint: draw the tangent line and estimate its slope).

Indicate in the graph how you found your values; do NOT use your calculator to find these values!

- 3. [16 points] Graph the function f(x) = x² ln(x) for x > 0. Indicate in the graph:
 (a) x- and y-intercepts
 - (b) Horizontal and Vertical asymptotes (if any). [Do $\lim_{x\to 0^+} x^2 \ln(x)$ numerically by computing values at $x = \frac{1}{10}$ and $x = \frac{1}{100}$.]
 - (c) Critical points and increasing/decreasing.
 - (d) Local/Absolute Max/Min, if any.

