MA 227, CALCULUS III Fall, 2010

 Name (Print last name first):

 Student Signature:

10 questions, 10 points each. SHOW ALL YOUR WORK! CIRCLE YOUR ANSWER!

<u>Question 1</u>

Find the gradient of the function $f(x, y) = xye^{-y}$ at the point (2, 0).

<u>Question 2</u>

Find the directional derivative of the function $f(x, y, z) = yz - xy^2$ in the direction of the vector $\vec{v} = 2\vec{i} - \vec{j} + 2\vec{k}$ at the point (1, 2, 1).

$\underline{\text{Question } 3}$

Find local maximum, minimum and saddle points (if any) of the function

$$f(x,y) = 2x^2 - 4xy - y^2 + 3y - 2.$$

$\underline{\text{Question } 4}$

Let $z = x^2y^2 + \frac{y}{x}$. Find equation of the tangent plane at point (1, -2).

<u>Question 5</u>

Find linear approximation for the function

$$f(x,y) = 2x^3 + x + y^2x$$

near point (1, -1).

<u>Question 6</u>

Let $f(x,y) = xy^2 - x^2y$ and $x = s + t^2$, $y = s^3t$. Find partial derivatives $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$.

 $\underline{\text{Question } 7}$

Let $f(x,y) = x\cos(y) - x^2y^2$. Find all second partial derivatives: f''_{xx} , f''_{xy} , f''_{yy} .

$\underline{\text{Question } 8}$

Find equation of the tangent plane to the surface $x^2 + y^2 - z^2 = -2$ at the point (1, -1, 2).

 $\underline{\text{Question }9}$

Find the maximum rate of change of $f(x,y) = x^2y^3 + 4\sqrt{y}$ at the point (-1,1). In which direction does it occur?

<u>Question 10</u>

Find the absolute maximum and absolute minimum of the function $f(x, y) = x^2 + y^2 - 4y - 2$ on the region $-1 \le x \le 1$, $0 \le y \le 3$. Be sure to provide coordinates of the points and the values of absolute maximum and minimum.