
FALL 2009 — MA 227-6B — TEST 3
NOVEMBER 18, 2009

Name:

There are 7 problems on this test. The number of points to earn is indicated for each
problem. Partial credit is awarded where appropriate. Your solution must include enough
detail to justify any conclusions you reach in answering the question. Points will be awarded
for the correct reasoning.

(1) (21 points) Find the local maxima, minima, and saddle points of the function g(x, y) =
x2 + 2y2 + x2y.

Solution:
Local extrema and saddle points occur at critical points, i.e., points where the gra-
dient is zero. The gradient of g is

∇g = 〈2x(1 + y), 4y + x2〉.
The first component is zero either if x = 0 or else if y = −1.

In the first case, when x = 0, the second component is 4y which is zero when y = 0.
Hence (0, 0) is a critical point.

In the second case, when y = −1, the second component is x2 − 4 which is zero
when x = ±2. Hence (2,−1) and (−2,−1) are critical points.

The nature of a critical point is (often) decided by the second derivative test. We
get gxx = 2 + 2y, gxy = gyx = 2x, and gyy = 4. Hence

D(x, y) = gxxgyy − g2
xy = 8(1 + y)− 4x2.

Since D(0, 0) = 8 > 0 the point (0, 0) is an extremum. Since gxx(0, 0) = 2 > 0
(note that also gyy = 4 > 0) the point (0, 0) is a minimum.

Since D(±2, 1) = −16 < 0 the points (2,−1) and (−2,−1) are saddle points.
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(2) (21 points) Use Lagrange multipliers to find maximum and minimum values of the
function f(x, y) = 2x+ y + 5 on the circle x2 + y2 = 1. Where do they occur?

Solution:
Only points on the circle are to be considered. This constraint is expressed as
g(x, y) = 0 where g(x, y) = x2 + y2 − 1. The method of Lagrange multipliers re-
quires to find the solutions of the following system of algebraic equations:

∇f = λ∇g,
g = 0.

In this case ∇f = 〈2, 1〉 and ∇g = 〈2x, 2y〉 so that the system is

2 = 2λx

1 = 2λy

1 = x2 + y2.

From the first equation (for instance) we get that λ can not be zero (otherwise the
first equation would be 2 = 0 which is absurd). Hence x = 2/(2λ) and y = 1/(2λ).
Therefore x = 2y. Using this in the third equation gives

1 = (2y)2 + y2 = 5y2.

There are two solutions: y1 = 1/
√

5 and y2 = −1/
√

5. Recalling x = 2y gives two
points to consider: P1 = (2, 1)/

√
5 and P2 = −(2, 1)/

√
5. The value of f at P1 is

5/
√

5 + 5 and the value of f at P2 is −5/
√

5 + 5. The former is the larger of the two.
Hence the maximum occurs at P1 and the minimum at P2.
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(3) (21 points) Evaluate the integral∫∫
D

(2x+ y)dA

where D is the region bounded by the curves y = x and y = x2.
Solution:

The graphs of y = x and y = x2 intersect at (0, 0) and at (1, 1). The graph of y = x2

lies below the one for y = x when 0 ≤ x ≤ 1. Thus, for fixed x between 0 and 1 the
variable y varies between x2 and x. The iterated integral reads∫ 1

0

∫ x

x2

(2x+ y)dydx.

We compute∫ 1

0

∫ x

x2

(2x+ y)dydx =

∫ 1

0

(2xy +
1

2
y2)
∣∣∣y=x
y=x2

dx

=

∫ 1

0

((2x2 +
1

2
x2)− (2x3 +

1

2
x4))dx

=

∫ 1

0

(
5

2
x2 − 2x3 − 1

2
x4)dx

= (
5

6
x3 − 1

2
x4 − 1

10
x5)
∣∣∣x=1

x=0

=
5

6
− 1

2
− 1

10

=
7

30
.
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(4) (13 points) Use polar coordinates to evaluate the integral
∫∫

D
xy2dA where D is the

left half of the disk of radius 3 centered at the origin.
Solution:

For polar coordinates we have x = r cos(θ) and y = r sin(θ). The points in the left
half plane have values of θ between π/2 and 3π/2. The points in the disk of radius
3 centered at the origin have values of r between 0 and 3. We must not forget that
dA = rdrdθ. Hence∫∫

D

xy2dA =

∫ 3π/2

π/2

∫ 3

0

r cos(θ)(r sin(θ))2rdrdθ

=

∫ 3π/2

π/2

cos(θ)(sin(θ))2

∫ 3

0

r4drdθ =
r5

5

∣∣r=3

r=0

∫ 3π/2

π/2

cos(θ)(sin(θ))2dθ.

To evaluate the θ-integral we substitute u = sin(θ), du = cos(θ)dθ. sin(π/2) = 1 will
be the lower limit of the integral while sin(3π/2) = −1 will be the upper limit. Hence∫ 3π/2

π/2

cos(θ)(sin(θ))2dθ =

∫ −1

1

u2du =
u3

3

∣∣∣u=−1

u=1
= −2

3
.

Together with the previous result we get∫∫
D

xy2dA = −35

5

2

3
= −2

34

5
= −162

5
.
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(5) (13 points) Find the absolute maximum and minimum as well as the points where
they occur for the function f(x, y) = 3 + xy over the disk of radius

√
8 centered at

the origin.
Solution:

We have to investigate both the interior and the boundary of the disk. For the
interior we find the critical points of f , i.e., the zeros of ∇f . Since ∇f = 〈y, x〉 there
is precisely one critical point, the origin. Note that f(0, 0) = 3.

The boundary of the disk is described by the constraint equation g(x, y) = 0 where
g(x, y) = x2 + y2 − 8. Here we use Lagrange multipliers. This method requires to
find the solutions of the following system of algebraic equations:

∇f = λ∇g,
g = 0.

In this case ∇f = 〈y, x〉 and ∇g = 〈2x, 2y〉 so that the system is

y = 2λx

x = 2λy

8 = x2 + y2.

From the first two equations we get x = 4λ2x. If x = 0 then y = 0 and 0 = 8 so that
x cannot be zero. Therefore we get 4λ2 = 1 and 2λ is either 1 or −1.

First let 2λ = 1, so that x = y. Then the third equation is 2x2 = 8 which holds
when x = 2 or x = −2. We have two points to consider: (2, 2) and (−2,−2). At
both points f assumes the value 7.

Now let 2λ = −1, so that x = −y. Then the third equation is again 2x2 = 8. Now
the two points are (2,−2) and (−2, 2). At both of these f assumes the value −1.

Comparing the three values −1, 3, and 7 we see that the minimum is −1 attained
at (2,−2) and (−2, 2) and the maximum is 7 attained at (2, 2) and (−2,−2).
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(6) (7 points) Compute the centroid of the solid E which is bounded by the paraboloids
z = x2 + y2 and z = 4− 3x2 − 3y2.

Solution:
E is symmetric with respect to rotation about the z-axis. The centroid lies therefore
on the z-axis, i.e., x̄ = ȳ = 0. The value z̄ is given by the integral∫∫∫

E

zdV.

The points of E satisfy x2 + y2 ≤ z ≤ 4− 3x2 − 3y2. Therefore we need to consider
only points (x, y) where x2 + y2 ≤ 4 − 3x2 − 3y2. Using equality here gives us the
boundary of that region, but x2 + y2 = 4− 3x2 − 3y2 precisely when x2 + y2 = 1, a
circle of radius 1 centered at the origin.

Using cylindrical coordinates x = r cos(θ), y = r sin(θ), and z = z we get∫∫∫
E

zdV =

∫ 2π

0

∫ 1

0

∫ 4−3r2

r2
zrdzdrdθ

(remember the Jacobian for cylindrical coordinates). Hence∫∫∫
E

zdV = 2π

∫ 1

0

1

2
rz2
∣∣∣z=4−3r2

z=r2
dr

= π

∫ 1

0

(r(4− 3r2)2 − r5)dr = π

∫ 1

0

(16r − 24r3 + 8r5)dr

= π(8− 6 +
8

6
) =

10π

3
.
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(7) (4 points) The ellipse E defined 4x2 + 9y2 ≤ 36 can be transformed into a circle by a
change of variables. Perform such a change of variables to find the area of the ellipse.

Solution:
Dividing by 36 we may express ellipse as(x

3

)2

+
(y

2

)2

≤ 1.

Thus we substitute u = x/3 and v = y/2, i.e., x = 3u and y = 2v to get the disk
u2 + v2 ≤ 1. This transformation has Jacobian

J =

∣∣∣∣3 0
0 2

∣∣∣∣ = 6.

Then

Area(E) =

∫∫
E

1dA(x, y) =

∫∫
D

JdA(u, v) = J

∫∫
D

1dA(u, v) = JArea(D)

where D is the disk u2 + v2 ≤ 1 which has area π. Hence the area of E is 6π.


