FALL 2007 — MA 227-6B — TEST 4 DECEMBER 5, 2007

Name: ____

1. Part I

There are 6 problems in Part 1, each worth 4 points. Place your answer on the line to the right of the question. Only your answer on the answer line will be graded.

(1) Compute div \mathbf{F} (= $\nabla \cdot \mathbf{F}$) when $\mathbf{F}(x, y, z) = \langle x + y, e^{xyz}, 5\cos(xy) \rangle$.

Solution: $1 + xze^{xyz}$, a scalar!

(2) Find the curl of the vector field $\mathbf{F}(x, y, z) = \langle 3xyz, 0, -x^2y \rangle$.

Solution: $\langle -x^2, 5xy, -3xz \rangle$, a vector!

(3) Compute grad $f (= \nabla f)$ when $f(x, y, z) = x^2 + y + z$.

Solution: $\langle 2x, 1, 1 \rangle$

(4) Find a parametrization for the cone $z = 2\sqrt{x^2 + y^2}$.

Solution: $\langle x, y, 2\sqrt{x^2 + y^2} \rangle$ or $\langle z \cos(\theta)/2, z \sin(\theta)/2, z \rangle$

(5) Find a function f such that $(\nabla f)(x, y) = \langle y^2, 2xy + 1 \rangle$.

Solution: $xy^2 + y$

(6) Evaluate the line integral $\int_C 3ds$ when C is the semicircle $\langle \cos(t), \sin(t) \rangle$, $0 \le t \le \pi$.

Solution: 3π

2. Part II

There are 3 problems in Part 2, each worth 12 points. On Part 2 problems partial credit is awarded where appropriate. Your solution must include enough detail to justify any conclusions you reach in answering the question.

(1) Let C be the boundary of the unit square (with vertices at (0,0), (1,0), (1,1), and (0,1)) oriented counterclockwise. Evaluate

$$\int_C (2y\,dx + (x^2 - x)\,dy)$$

by two methods: directly as a line integral and using Green's Theorem.

Solution:

1. Using Green's theorem: $Q_x - P_y = 2x - 1 - 2 = 2x - 3$ needs to be integrated over the unit square, i.e., $\int_0^1 \int_0^1 (2x - 3) dy dx = -2.$ 2. Directly:

There are four pieces which make up the curve C: On the vertical ones $x^2 - x = 0$ and x'(t) = 0. These contribute nothing to the integral. On the bottom one y = 0and y'(t) = 0. It also contributes nothing. On the top one x(t) = 1 - t, y(t) = 1 so that we get $\int_0^1 2(-dt) = -2$. FALL 2007 — MA 227-6
B — TEST 4

(2) Find the work done by the force field $\mathbf{F} = 3x \mathbf{i} + (y+9) \mathbf{j}$ on a particle that moves along a line segment from the point (-1, 2) to the point (2, 3).

First Solution:

Work is the given by the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$. $\mathbf{r}(t) = \langle 3t - 1, t + 2 \rangle$ where $0 \le t \le 1$. Therefore $\mathbf{r}'(t) = \langle 3, 1 \rangle$. $\mathbf{F}(x, y) = \langle 3x, y + 9 \rangle$, $\mathbf{F}(\mathbf{r}(t)) = \langle 9t - 3, t + 11 \rangle$, $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = 27t - 9 + t + 11 = 28t + 2$. $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 (28t + 2)dt = 16$.

Second Solution:

F is conservative with potential $f(x, y) = 3x^2/2 + y^2/2 + 9y$. The line integral equals then f(2, 3) - f(-1, 2) = 16.

(3) Find the surface area of that part of the paraboloid $3x^2 + 3y^2 + z = 12$ that lies above the *x-y*-plane.

Solution:

We can use the polar coordinate r and θ as parameters:

$$\mathbf{r}(r,\theta) = \langle r\cos(\theta), r\sin(\theta), 12 - 3r^2 \rangle$$

Here $0 \le \theta \le 2\pi$. r may be as small as zero and becomes largest when z = 0 where $3r^2 = 12$, i.e., $r^2 \le 4$ and $r \le 2$.

Compute the tangent vectors \mathbf{r}_r and \mathbf{r}_{θ} and form their cross product:

$$\langle \cos(\theta), \sin(\theta), -6r \rangle \times \langle -r\sin(\theta), r\cos(\theta), 0 \rangle$$

= $\langle 6r^2 \cos(\theta), 6r^2 \sin(\theta), r \rangle.$

The length of this normal vector is $\sqrt{36r^4 + r^2} = r\sqrt{36r^2 + 1}$. Surface area is given by

$$\iint_{S} dS = \iint_{D} |\mathbf{r}_{r} \times \mathbf{r}_{\theta}| d(r,\theta) = \int_{0}^{2} \int_{0}^{2\pi} r\sqrt{36r^{2} + 1} d\theta dr.$$

The θ -integration gives a factor 2π and for the *r*-integration we substitute $u = 36r^2 + 1$, du = 72r dr. The new limits are given by $1 \le u \le 145$. Thus the area is

$$\frac{2\pi}{72}\int_{1}^{145}\sqrt{u}du = \frac{\pi}{36}\frac{2}{3}(145^{3/2}-1) = \frac{\pi}{54}(145^{3/2}-1).$$