MA 227 (Calculus-III) Show your work. Each problem is 20 points

1. Compute the integral

$$\iint_D (2xy - x^2) \, dA$$

where D is a triangle with vertices (0,0), (2,2) and (2,-2).

Answer: -8. The integral setting is

$$\int_0^2 \int_{-x}^x (2xy - x^2) \, dy \, dx$$

 $\begin{array}{l} \mbox{Midterm test } \#3 \\ \mbox{Thu, Nov 18, 2004} \end{array}$

2. Compute the integral

$$\iiint_E z \, dV$$

where the solid E is bounded by the coordinate planes and the plane x + y + z = 2.

Answer: 2/3. The integral setting is

$$\int_0^2 \int_0^{2-x} \int_0^{2-x-y} z \, dz \, dy \, dx$$

3. Compute the integral

$$\iiint_E z\sqrt{x^2+y^2}\,dV$$

where the solid E is inside the cylinder $x^2 + y^2 = 9$ and between the planes z = 1 and z = 3.

Answer: 72π . It is better to use cylindrical coordinates:

$$\int_{0}^{2\pi} \int_{0}^{3} \int_{1}^{3} zr^{2} dz dr d\theta$$

4. Compute the integral

$$\iiint_E \frac{dV}{\sqrt{x^2 + y^2}}$$

where the solid E is bounded below by the cone $x^2 + y^2 = 4z^2$ and above by the sphere $x^2 + y^2 + z^2 = 36$.

Answer: $36\pi \tan^{-1} 2$. It is better to use spherical coordinates:

$$\int_0^{2\pi} \int_0^{\tan^{-1}2} \int_0^6 \rho \, d\rho \, d\varphi \, d\theta$$

5. Find the area of the surface with parametric equations

$$\mathbf{r}(u,v) = (2u-v)\mathbf{i} - 2v\mathbf{j} + (u+v)\mathbf{k}, \qquad u^2 + v^2 \le 4.$$

Answer: $4\pi\sqrt{29}$. The first step: $|\mathbf{r}_u \times \mathbf{r}_v| = \sqrt{29}$.

[Bonus] Two random variables X and Y have joint probability density function

$$f(x,y) = Ce^{-x^2 - y^2}$$

where C > 0 is a constant. Compute the value of C. Find the expected values μ_X and μ_Y .

Answer: C = 1/pi; $\mu_X = \mu_Y = 0$.