Math 126 FINAL EXAM

Do not use any books or notes. You can use a calculator, but not graphing calculator. If you use a calculator, leave your results in exact form instead of decimal form. Show all work for full credit.

1. Evaluate the definite integral: (20 points)

(a)
$$\int_{1}^{2} \frac{x^{2} + 1}{\sqrt{x}} dx$$
 (b) $\int_{0}^{2} (x^{2} + 1)^{2} dx$ (c) $\int_{0}^{\pi/2} e^{\sin x} \cos x dx$
(d) $\int_{1}^{2} x\sqrt{x - 1} dx$ (e) $\int_{0}^{1/2} \sin^{-1} x dx$

2. Evaluate the indefinite integral: (20 points)

(a)
$$\int \sqrt[5]{3-5x} dx$$
 (b) $\int \frac{e^x}{e^x+1} dx$ (c) $\int \sqrt{x} \ln x dx$
(d) $\int x \tan^{-1} x dx$ (e) $\int \cos x \ln(\sin x) dx$

3. Determine whether the $\underline{SEQUENCE}$ converges or diverges. (9 points)

(a)
$$a_n = \frac{2^n}{3^{n+1}}$$
 (b) $a_n = \frac{2n-3}{3n+4}$ (c) $a_n = \frac{\ln n}{\sqrt{n}}$

4. Determine whether the <u>SERIES</u> is convergent or divergent. If it is convergent, find the <u>SUM</u>.(6 points)

(a)
$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n}$$
 (b) $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$

5. Determine whether the <u>SERIES</u> is convergent or divergent. You do NOT need to find the sum. But you need to support your claim by appropriate work. (20 points)

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{3n^2 + 1}$$
 (b) $\sum_{n=2}^{\infty} \frac{n}{n^2 - 1}$ (c) $\sum_{n=2}^{\infty} \frac{1}{n^3 - n}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[3]{n}}$ (e) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3}$

6. Find the <u>RADIUS</u> of convergence and <u>INTERVAL</u> of convergence of the **power series** $\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n2^n}.$ (5 points)

7. Find $\mathbf{a} - \mathbf{b}$ and $3\mathbf{a} + 4\mathbf{b}$: (4 points)

(a)
$$a = i - 2j + k$$
, $b = j + 2k$ (b) $a = 3i - 2k$, $b = i - j + k$

8. Find the cross product $\mathbf{a} \times \mathbf{b}$ and verify that it is orthogonal to both \mathbf{a} and \mathbf{b} . (6 points)

$$\mathbf{a} = \langle -3, 2, 2 \rangle, \qquad \mathbf{b} = \langle 6, 3, 1 \rangle$$

9. Sketch the region enclosed by the curves $y = 1 + \sqrt{x}$ and y = 1 + x/3. Decide whether to integrate with respect to x or y. Then find the area of the region. (4 points)

10. Find the volume of the solid obtained by rotating the region bounded by the curves y = xand $y = \sqrt{x}$ about x = 2. (6 points)