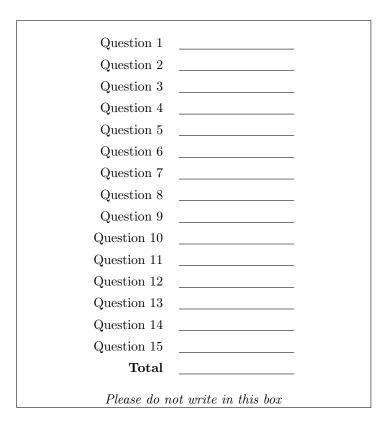
Name: _


Calculus 2

MA126-6B

Final Examination

Thursday, December 11, 2003

Instruction: Answer the questions in the space provided. Use the scratch paper provided if needed. Please keep your answers neat, complete but brief, and to the point.

QUESTION 1. Evaluate the integral:

$$\int_0^{\pi/4} \frac{x}{\cos^2 x} \, dx.$$

QUESTION 2. Evaluate the integral:

$$\int \frac{dx}{x(x^2+1)}.$$

QUESTION 3. The midpoint method M_n is used to approximate the following integral:

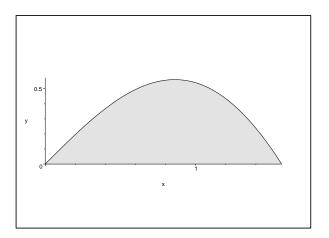
$$\int_0^1 e^{x^3} \, dx.$$

How large should one choose n in order to guarantee the error is less than 10^{-6} ? *Hint:* Recall that the error in the midpoint method can be estimated by:

$$|E_M| \le \frac{K(b-a)^3}{24n^2}.$$

QUESTION 4. Determine whether the following improper integral converges:

$$\int_0^1 \frac{\sqrt{x^2 + 1}}{x} \, dx.$$


QUESTION 5. Find the area bounded between the two curves:

$$y = \sqrt{x}, \qquad y = |x - 2|.$$

QUESTION 6. Find the volume of the solid of revolution obtained by rotating the area under the curve

 $y = x \cos x, \qquad 0 \le x \le \pi/2,$

about the y-axis:

Hint: Use cylindrical shells.

QUESTION 7. Find the arclength of the curve:

$$x = y^{3/2}, \qquad 0 \le y \le 1.$$

QUESTION 8. Check that the function:

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{if } 0 \le x \le \pi\\ 0 & \text{otherwise} \end{cases}$$

is a probability density function. Find the mean, standard deviation, and median.

QUESTION 9. Determine whether the sequence $\left\{\left(1+\frac{3}{n}\right)^{4n}\right\}_{n=1}^{\infty}$ converges, and if it does, find its limit. Justify your answer.

QUESTION 10. Determine whether the following series converges, and if it does, find its sum: $^{\infty} \swarrow ^{2} 2 \sum^{n}$

$$\sum_{n=2}^{\infty} \left(-\frac{2}{3}\right)^n$$

QUESTION 11. Determine whether the following series converges:

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right).$$

Justify your answer.

QUESTION 12. Determine whether the following series converges, converges absolutely, or converges conditionally:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}.$$

Hint: Use the integral test.

QUESTION 13. Find the Maclaurin series for the function:

$$f = \frac{1}{(1-x)^2}.$$

Determine the interval of convergence.

Hint: $1/(1-x)^2$ is the derivative of 1/(1-x).

QUESTION 14. Find the Maclaurin series for the function:

$$f(x) = \ln(1 - x).$$

Determine its interval of convergence.

Hint: $\ln(1-x)$ is the indefinite integral of -1/(1-x).

QUESTION 15. Check that the series

$$\sum_{n=0}^{\infty} \frac{1}{(2n)!}$$

converges, and find its sum.

Hint: Find the Maclaurin series of $\cosh x = (e^x + x^{-x})/2$.