Calculus 2

MA126-6B

Midterm Examination 1

Tuesday, September 30, 2003

Instruction: Answer the questions in the space provided. Use the scratch paper provided if needed. Please keep your answers neat, complete but brief, and to the point.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Question 6	
Total	
Please do not write in this box	

QUESTION 1. Define:

$$f(x) = \int_0^x \cos(t^2) dt, \qquad 0 < x < \sqrt{\pi}.$$

Determine the interval(s) where f is increasing.

QUESTION 2. Find the integral:

$$\int \frac{dx}{\sqrt{4+x^2}}.$$

Show all the steps in your derivation. Hint: Substitute $x = 2 \sinh u$.

QUESTION 3. Compute:

$$\int_0^1 \frac{dx}{x^2 - 4}.$$

QUESTION 4. Find the integral:

 $\int \cos^3 x \, \sin^2 x \, dx.$

QUESTION 5. The midpoint method M_n is used to approximate the following integral:

$$\int_0^1 e^{x^3} \, dx.$$

How large should one choose n in order to guarantee the error is less than 10^{-6} ? *Hint:* Recall that the error in the midpoint method can be estimated by:

$$|E_M| \le \frac{K(b-a)^3}{24n^2}.$$

QUESTION 6. Determine whether the following improper integral converges:

$$\int_{1}^{\infty} \frac{1}{\sqrt{x^3 + 1}} \, dx.$$