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Introduction and History
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Ambarzumian

“Über eine Frage der Eigenwerttheorie” (1928):

Wenn das Spektrum die Differentialgleichung wirklich vollständig
definiert[e], so wäre es möglich, z. B. den Aufbau irgend eines
Atomsystems praktisch aus dem Spektrum zu bestimmen, d. h.
die Aufgabe zu lösen, welche sozusagen reziprok zum
Schrödingerschen Problem steht.
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The Schrödinger equation

• Consider the Schrödinger equation with potential q

−y ′′ + qy = λy .

q is a locally integrable function on [0, b) where 0 < b ≤ ∞.

• Boundary conditions are required at 0 (and possibly at b):
• Dirichlet condition: y(0) = 0
• Neumann condition: y ′(0) = 0
• Robin condition: y(0) cosα + y ′(0) sinα = 0

• Unless mentioned otherwise, we assume below a Dirichlet condition at
zero.
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Ambarzumian and Borg

• Ambarzumian treats only a (very) special case: the Schrödinger
equation on a finite interval with continuous q.

• If the Neumann-Neumann eigenvalues are those for potential 0, then
q must be 0.

• Borg (1946) showed that, in general, two sets of eigenvalues are
needed to identify a potential on an interval uniquely.

• Levinson (1949) and Marchenko (1950) used different sets of data: in
addition to one set of (Dirichlet) eigenvalues one needs also either
Neumann data of the eigenfunctions or the norming constants of the
eigenfunctions.
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Inverse spectral theory

• Allow b =∞ and q locally integrable on [0, b).

• Weyl-Titchmarsh solutions: c(λ, ·) + m(λ)s(λ, ·)
• The Weyl-Titchmarsh m-function has the Herglotz-Nevanlinna

property.

• Thus

m(λ) = Aλ+ B +

∫
R

( 1

t − λ
− t

1 + t2
)
dρ(t)

• ρ is called the spectral measure, it is uniquely determined by m.

• m determines eigenvalues and continuous spectrum as those points
where it seizes to be analytic.

• Gelfand-Levitan (1951): the spectral function ρ determines q uniquely.
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Inverse scattering theory

• Scattering is a perturbative process, i.e., one compares solutions for
two different potentials q and q0 = 0.

• Unperturbed solutions: eikx , k2 = λ, Im k ≥ 0

• Scattering condition for half-line [0,∞):
∫∞
0 (1 + x)|q(x)|dx <∞.

• This guarantees finitely many eigenvalues (all negative) and essential
spectrum [0,∞).

• Jost solution: ψ(k , x) = eikx +
∫∞
x K (x , t)eiktdt.

• For fixed x : ψ(·, x) is analytic in the open upper half plane and
continuous in the closed upper half plane.

• Jost function: ψ(·, 0)

• Marchenko (1955): eigenvalues, norming constants, and scattering
phase (2iδ(k) = ψ(k, 0)/ψ(k , 0)) determine q uniquely.
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Resonances
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Resonances

• If q decays super-exponentially, ψ(·, x) can be analytically continued
to the lower half of the k-plane (and m through the continuous
spectrum to a second sheet of a Riemann surface).

• Recall : if Im(k) > 0 and ψ(k, 0) = 0 then k2 is an eigenvalue with
eigenfunction ψ(k, ·).

• If Im(k) ≤ 0 and ψ(k, 0) = 0 then k2 is a resonance. In this case
ψ(k , ·) satisfies the differential equation and the boundary condition
at 0 but is not square integrable.

• Both are relevant/visible in spectroscopy.
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The inverse resonance theorem

Theorem
Suppose that q is compactly supported. Then the location of all
eigenvalues and resonances determines q uniquely.

• The Jost function extends to an entire function of growth order 1 in k.

• Hadamard’s factorization theorem gives ψ(·, 0) up to a factor eak+b.

• a and b are determined from asymptotics as k tends to ∞ along the
positive imaginary axis (ψ(k, 0) ∼ 1 independently of q).

• The claim follows immediately from Marchenko’s scattering theorem
(norming constants are −iψ̇(k , 0)/ψ(−k , 0), scattering phase is
ψ(k , 0)/(2iψ(k , 0))).

• It appears this went unnoticed for more than 40 years until Korotyaev
(2000) and Zworski (2001/1988) pointed it out.
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Asymptotic distribution of resonances

• The uniqueness theorem requires knowledge of ALL eigenvalues and
resonances.

• If q is supported on [0,R], absolutely continuous on [0,R], and has a
jump discontinuity at R, then the resonances are asymptotic to the
curve given by

Im(z) = − 1

R
ln(|Re(z)|) +

1

2R
ln(|q(R)|/4).

• Small changes in R or q(R) produce different asymptotics.

• Large resonances are physically insignificant.

• Question: How can we state (and prove) this mathematically?
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Recovery from finite data (for compact intervals)

• In practice it is impossible to know infinitely many eigenvalues or to
know them precisely.

• Hochstadt (1973) first poses the question what can be said when
finite data are given.

• Rundell-Sacks (1992) give remarkable examples and reasons why one
can hope for a reasonable recovery.

• Brown, Samko, Knowles, Marletta (2003) recover potentials by
minimization.

• Röhrl (2005) and Andrew (2006) have other approaches.

• ....
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Results
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Stability for the inverse resonance theorem

Theorem (Marletta, Shterenberg, W.; Commun. Math. Phys. 2010)

• q, q̃ are supported in [0, 1]

• ‖q‖1, ‖q̃‖1 ≤ Q

• ‖q − q̃‖p ≤ Qp for some p ∈ (1, 2]

• Inside a disc of radius R all resonances and eigenvalues of q are
ε-close to those of q̃

Then

sup
x∈[0,1]

∣∣∣∣∫ 1

x
(q − q̃)dx

∣∣∣∣ ≤ f (ε,R)

where f (ε,R)→ 0 as R →∞ but εR1/6 → 0.
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Stability in the case of a compact interval

• Ryabushko (1983): Suppose q0 and q are real and have zero average.
Then

‖q − q0‖L2 ≤ C (‖λ(q)− λ(q0)‖`2 + ‖µ(q)− µ(q0)‖`2)

where C depends on ‖q‖2 and ‖q0‖2.

• McLaughlin (1988) has a similar estimate involving one spectrum and
norming constants.

• Marletta and myself (2005) gave an estimate (in terms of N and ε) on∣∣∣∣∫ x

0
(q − q0)dt

∣∣∣∣ ≤ f (ε,N)

where f (ε,N)→ 0 as N →∞ but ε logN → 0 provided that 2N
eigenvalues are known up to an error ε.
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Comparison of eigenvalues

If k is large, q(x) = sin(kx), and q̃(x) = 0 then small eigenvalues
practically coincide.
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Discrete problems

• Brown, Naboko, W. (B. LMS 2005): Uniqueness for the discrete
Schrödinger equation.

• Marletta, W. (Inverse Problems 2007): Stability for the discrete
Schrödinger equation.

• Brown, Naboko, W. (Constructive Approximation 2009): Uniqueness
for Hermite operators (

√
nyn−1 + bnyn +

√
n + 1yn+1).

• W., Zinchenko (Inverse Problems 2010) and Shterenberg, W.,
Zincenko (Proc. Sympos. Pure Math. 2013): Uniqueness for CMV
operators

• Marletta, Naboko, Shterenberg, W. (J. Anal. Math. 2011): Stability
for several classes of Jacobi operators: Spectrum is (i) all of R, (ii) a
half-line, or (iii) one finite interval.
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Full line problems

• Bledsoe (IEOT 2012): discrete case

• Bledsoe (Inverse Problems 2012): continuous case

• Eigenvalues and resonances, i.e., the poles of the reflection
coefficient, do not yet determine it.

• The zeros of the reflection coefficient are also needed.
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Left-definite operators

• If q ≥ 0 but no requirement on the sign of w is made one can develop
a spectral and scattering theory for

−y ′′ + qy = λwy .

• Underlying Hilbert space: {y ∈ ACloc : y ′,
√
qy ∈ L2}

• Spectral and scattering theory was developed in
• Bennewitz, Brown, W. (SIAM J. Math. Anal. 2009) for the half-line

case
• Bennewitz, Brown, W. (J. Differential Equations 2012) for the full-line

case

• The inverse resonance problem for the half-line case was treated by
Bledsoe, W. (J. Math. Anal. Appl., 2015)
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Outline of the proof
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Transformation Operators

The Jost solutions associated with q and q̃ are related by

ψ̃(z , x) = ψ(z , x) +

∫ 2−x

x
K (x , t)psi(z , t)dt

where K satisfies the wave equation

Kxx(x , t)− Ktt(x , t)

= (q̃(x)− q(t))K (x , t)

with the boundary conditions:

We need to estimate
K (x , x) = 1

2

∫ 1
x (q̃(s)−q(s))ds.
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The wave equation

K = K_x-K_t = 0
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Solving the wave equation

The wave equation may be solved uniquely knowing K (0, t), 0 ≤ t ≤ 2
and the fact that K (x , 2− x) = 0.
Iteration:

K0(x , t) = K (0, x + t)

Kn+1(x , t) =

∫ 1

(t+x)/2

∫ (t+x)/2

(t−x)/2
(q(α+β)− q̃(α−β))Kn(α−β, α+β)dβdα

K (x , t) =
∞∑
n=0

Kn(x , t)

We need to estimate K (0, t).
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Connecting with Jost functions I

0

q q̃

Lq = K−1
q Kq̃

K

K (0, t) = (Kq̃ − Kq)(0, t) +

∫ t

0
(Kq̃ − Kq)(0, s)Lq(s, t)ds

We need to estimate (Kq̃ − Kq)(0, t).
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Connecting with Jost functions II

• ψ(z , 0) = 1 +
∫ 2
0 Kq(0, t)eiztdt

• ψ̃(z , 0) = 1 +
∫ 2
0 Kq̃(0, t)eiztdt

• ψ̃(z , 0)− ψ(z , 0) =
∫ 2
0 (Kq̃ − Kq)(0, t)eiztdt

• (Kq̃ − Kq)(0, t) = 1
2π

∫
R(ψ̃ − ψ)(z , 0)e−iztdz

We need to estimate (ψ̃ − ψ)(z , 0).
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Hadamard’s factorization theorem
• If f is entire of growth order at most one, then

f (z) = zn0ea+bz
∞∏
n=1

(1− z/zn)ez/zn .

• If the first N(R) ∼ 2eR zeros coincide

ψ(z , 0)

ψ̃(z , 0)
= e(a−ã)z+b−b̃ Π(R, z)

Π̃(R, z)

where

Π(R, z) =
∞∏

n=N(R)+1

(1− z/zn)ez/zn .

• |Π(R, z)− 1| ≤ C |z |2/R when 2|z | < R.
• This provides an estimate for |z | < R1/3: ψ(z , 0)/ψ̃(z , 0) ≈ 1 and

hence
|ψ(z , 0)− ψ̃(z , 0)| ≤ CR−1/3.
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Details

If |z | is small: E (z) = (1− z)ez ≈ 1− z2, In fact, | log E (z)| ≤ 2|z |2

|Π(R, z)− 1| ≤ | log Π(R, z)| exp(| log Π(R, z)|)

| log Π(R, z)| ≤
∑
|zn|≥R

| log E (z/zn)| ≤ 2|z |2
∑
|zn|≥R

|zn|−2

= 2|z |2
∫ ∞
R

dN(t)

t2
= 4|z |2

∫ ∞
R

N(t)

t3
dt = O(|z |2/R)
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Estimate for |z | ≥ R1/6

• (Kq̃ − Kq)(0, t) = h(t) + 1
2

∫ 1
t/2(q̃ − q) where h, h′ is AC on [0, 2].

• Integration by parts in ψ̃(z , 0)− ψ(z , 0) =
∫ 2
0 (Kq̃ − Kq)(0, t)eiztdt

gives

ψ̃(z , 0)− ψ(z , 0) =
i

z
(Kq̃ − Kq)(0, 0)− i

4z
Ĝ (z)

where

Ĝ (z) =

∫ 2

0

(
(q̃ − q)(t/2)− 4h′(t)

)
eiztdt.

• To deal with the last term one needs the Hausdorff-Young inequality:
for 1 < p ≤ 2

‖Ĝ‖q ≤
p1/(2p)

q1/(2q)
‖G‖p.

• Here one needs the assumption that q̃ − q be in Lp.
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Open problem
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Two (or more) spectral bands

Suppose q(x) = −2℘(x + ω). The spectrum of the associated Schrödinger
operator has only absolutely continuous spectrum with one gap. All
solutions of −y ′′ + qy = λy are explicitly known.
The inverse of the map ℘(z) = λ maps the energy (λ) plane to
parallelogram (the fundamental domain of ℘) in a one-to-two fashion.
Compactly supported perturbations do not change the essential spectrum
but introduce eigenvalues and resonances ....
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Thank you for your attention!
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